The industrial applications of pumps have greatly changed the way machines work. At the helm of this transformation is the high pressure positive displacement pump (abbreviated as the PD pumps). Ever since their discovery, they have constantly been applied in machinery both in the traditional and modern setting.
The rotary and reciprocating pumps constitute the two main classes of pumps. They are similar in that they both allow a constant rate of flow but different in a functional point of view. Rotary pumps require constant lubrication through the pumping process. Their suitability with highly viscous fluids is the corner stone of their operation. They however cannot transmit abrasive fluids like water and gas efficiently. Vaporized fluids can be pumped but for only limited periods of time. Reciprocating pumps on the other hand are more all rounded because they are better suited for both viscous and abrasive liquids.
PD pumps way of working is entirely dependent on pressure and viscosity. They transmit fluids by trapping say an amount equal to its volume and moving it through a discharge pipe. The effect of these two properties is on the flow rate and efficiency. The main cause in their efficiency is their ability to keep a uniform flow despite unpredictable changes in discharge pressure and viscosity.
There have been numerous applications of this types of pumps. A major milestone that has been achieved is in the oil and petroleum trade. The centrifugal pump was abandoned since it could not move fluids with gas. The gas content constituted part of the crude oil along with water and sand residues. Specific designs however allowed the PD pumps to move significantly large quantities of gas. Even the most basic designs could transmit up to 50 percent gas quantities.
This desirable property has been effectively applied. Initially the extracted crude oil contained oil, gas, sand and water. Separation had to be done prior to transportation and each element mentioned above had to be transported separately. This was in essence quite expensive. PD drives however enabled the petroleum industry to tremendously reduce the cost of offshore oil production since there was no need of separating the initial mixture before moving it.
In the field of chemical engineering, PD drives are vital to the pumping mechanisms. A standard chemical reaction results in huge changes in viscosity of the underlying mixture. This implies that other pumps such as the centrifugal types would not sufficiently carry the mixture through the reactor. PD drives will be able to transmit the mixture constantly irregardless of the fluctuations. This is the major reason why its uses extend to the pharmaceutical, foods and beverages and the biotechnology industries.
Considering the high amounts of paper in use in an economy, PD drives contribution to its manufacture is worth the mention. The entire process of paper milling is a highly regulated industry. This implies that any lag in function of a unit would in a varied number of ways hamper the production process. Pumps function is to keep a constant supply of fuel in a system. The constant changes in viscosity and clogging implies that the positive pumps would be the most suitable for the job.
As a parting shot, each and every aspect of the transmitted fluid should be analyzed before choosing which pumps to use, however the PD pumps have been seen to be efficient at maintaining the rate of flow.
The rotary and reciprocating pumps constitute the two main classes of pumps. They are similar in that they both allow a constant rate of flow but different in a functional point of view. Rotary pumps require constant lubrication through the pumping process. Their suitability with highly viscous fluids is the corner stone of their operation. They however cannot transmit abrasive fluids like water and gas efficiently. Vaporized fluids can be pumped but for only limited periods of time. Reciprocating pumps on the other hand are more all rounded because they are better suited for both viscous and abrasive liquids.
PD pumps way of working is entirely dependent on pressure and viscosity. They transmit fluids by trapping say an amount equal to its volume and moving it through a discharge pipe. The effect of these two properties is on the flow rate and efficiency. The main cause in their efficiency is their ability to keep a uniform flow despite unpredictable changes in discharge pressure and viscosity.
There have been numerous applications of this types of pumps. A major milestone that has been achieved is in the oil and petroleum trade. The centrifugal pump was abandoned since it could not move fluids with gas. The gas content constituted part of the crude oil along with water and sand residues. Specific designs however allowed the PD pumps to move significantly large quantities of gas. Even the most basic designs could transmit up to 50 percent gas quantities.
This desirable property has been effectively applied. Initially the extracted crude oil contained oil, gas, sand and water. Separation had to be done prior to transportation and each element mentioned above had to be transported separately. This was in essence quite expensive. PD drives however enabled the petroleum industry to tremendously reduce the cost of offshore oil production since there was no need of separating the initial mixture before moving it.
In the field of chemical engineering, PD drives are vital to the pumping mechanisms. A standard chemical reaction results in huge changes in viscosity of the underlying mixture. This implies that other pumps such as the centrifugal types would not sufficiently carry the mixture through the reactor. PD drives will be able to transmit the mixture constantly irregardless of the fluctuations. This is the major reason why its uses extend to the pharmaceutical, foods and beverages and the biotechnology industries.
Considering the high amounts of paper in use in an economy, PD drives contribution to its manufacture is worth the mention. The entire process of paper milling is a highly regulated industry. This implies that any lag in function of a unit would in a varied number of ways hamper the production process. Pumps function is to keep a constant supply of fuel in a system. The constant changes in viscosity and clogging implies that the positive pumps would be the most suitable for the job.
As a parting shot, each and every aspect of the transmitted fluid should be analyzed before choosing which pumps to use, however the PD pumps have been seen to be efficient at maintaining the rate of flow.
About the Author:
If you are looking for high pressure positive displacement pump, detailed descriptions can be found on our website. Check out our complete range of products and services by clicking here http://chemacinc.com.
No comments:
Post a Comment